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INTRODUCTION

Modeling the neutron degradation of 12L inverters has previously been
performed,2 using specially written computer programs based on closed

form expressions for the various cell current components. Component

parameter expressions were derived in terms of idealized cell geometry,

carrier diffusion coefficients, carrier lifetimes and doping density.

The modeling approach used in this study differs in that the comprehen-

sive one-dimensional device physics PN code is used to obtain the charac-

teristics of the inverter cell elements. The PN code 3 performs a numerical

integration of the continuity and Poisson's equations for an arbitrary dif-

fusion profile. Calculated results are then a more exact solution of the

12L transistor and parasitic diode element characteristics over the whole

current range of operation. These characteristics are then used to obtain

the SPICE4 bipolar transistor and diode model parameters for use in a cir-

cuit simulation of the 12L inverter cell 5 . Using this combined approach

the terminal response of the inverter cell can be predicted from a knowl-

edge of cell geometry, doping profiles, and carrier lifetimes. The de-

graded characteristics of the cell elements after neutron irradiation are

determined from degraded carrier lifetimes using known lifetime damage

coefficients. The degraded performance of the inverter cell is then

determined from the degraded component characteristics.

This modeling approach was applied to the second generation 12L tech-

nology at Texas Instruments in order to determine what processing varia-

tions could be made to the standard commercial process in order to increase

the neutron induced failure levels. This effort is part of a Defense

Nuclear Agency program to increase the overall radiation hardness of

bipolar LSI technologies.

I3



PN CODE PREDICTIONS

The PN code is used to determine the current versus voltage charac-

teristics of the 12L inverter components. These components consist of a

lateral pnp injector transistor, a vertical npn switching transistor and a

vertical parasitic diode. These elements are shown in Figure 1 which con-

sists of a top surface and cross-sectional view of a four output inverter

cell representative of the second generation 12L technology used in this

study 6 . The process utilizes a thin n type epitaxial layer on an n+ sub-

strate. A deep heavily doped, p diffusion is used for the injector and

extrinsic npn base (also pnp collector). The npn intrinsic base consists

of a p- implant and the npn collector epitaxial region has a shallow n+

contact diffusion. The cells are surrounded by an oxide sidewall to pre-

vent sidewall injection.

The inputs to the PN code consist of the doping profile (input at up to

30 mesh regions), cross-sectional area, a table of mobility versus doping

density, carrier lifetimes at up to twenty locations in the profile, energy

level of carrier recombination center, avalanche and tunneling parameters

(if desired), exterior resistance, capacitance and inductance, and terminal

voltages versus time.

The doping profiles for the 12L elements of the standard commercial

process were obtained from the manufacturer. These profiles were deter-

mined using the computer code SUPREM which calculates a diffusion and/or

implant profile based on processing schedule parameters such as diffusant

type and concentration, diffusion times and temperatures and implant

energies and fluence. The diffusion and implant depths and epitaxial

thickness were verified with angle lap and stain data taken by NWSC Crane.

The doping profiles for the standard process npn and pnp transistors are

given in Figures 2 and 3 respectively. The npn profile i% shown from the

top surface down and the pnp profile is taken from the center of the

4
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Figure 1. Top surface and cross sectional view of 12 L
four output Iiverter cell used in study.

5



I

injector contact to the center of the input contact on a horizontal line

half way between the surface and the bottom of the P+ diffusion. The

profiles in Figures 2 and 3 are shown point by point as input to the PN

code. These points define the mesh regions. The user inputs the number of

mesh points within each region and the code performs a linear interpolation

between mesh regions to determine the doping density at each mesh point.

Up to 300 total mesh points were allowed with the version of the PN code

used in this study. i 1

The preirradiation carrier lifetimes were taken from a least squares V
fit of transistor lifetimes versus doping density using data from published

and unpublished reports7 ,8 . A plot of this data is given in Figure 4.

The energy level for the single level SRH recombination model used in the

PN code was taken to be at the center of the silicon band gap.

In order to determine the DC input parameters for the Gummel-Poon (GP)

bipolar transistor model used in SPICE, a forward biased base-emitter vol-

tage was applied to the transistor, with VBC = 0, and the base and col-

lector currents (IB , IC) were determined. The 1B and IC values,

taken in 0.1 V steps from VBE = 0 to VBE = 0.9 V, were plotted and the

GP model parameters determined graphically. In a similar manner, the para-

sitic diode I-V characteristic was calculated, and the SPICE diode model

parameters determined.

SPICE CIRCUIT ANALYSIS j
The SPICE circuit analysis code was used to determine the fanout per

collector versus the output current for a four output inverter. The cir-

cuit representation of the inverter cell 5 is shown in Figure 5. The fanout

per collector is determined by applying a voltage to the input terminal

with the injector grounded and measuring the ratio of output current to

input current as was done experimentally.

6
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The resistance RB1 is the extrinsic base resistance from the input con-

tact to the first collector. RB2, 3 and 4 are extrinsic base resistances

between collectors and REND is the resistance of the base end section.

These resistances were calculated from a knowledge of the cell geometry and

the sheet p of the P+ diffusion. The parasitic diode, DBC, represents

the P+ n n+ diode under the input contact. Included in the DBC diode

model are both the recombination under the metal contact and the base input

section around the contact under the oxide. Since it was difficult to

accurately model an oxide pt n n+ diode with the PN code the region

under oxide was included by assuming a saturaton current density under

oxide to be 0.1 times the saturation current density under metal. This

estimate is based on the work of Berger9 who used special test structures

to measure these current densities. The area of the oxide covered input

region is scaled by 0.1 and added to the contact area to determine the

saturation current of DBC. The parasitic diodes D2, 3 and 4 are also

scaled in area by 0.1 since they are all oxide covered. A parasitic diode

was not included under the injector since the injector is grounded to

determine fanout. The transistors Q1-Q4 are represented by the GP model

for the inverted npn transistor and QI is represented by the GP model for

the lateral pnp transistor. The GP bipolar transistor model reproduces the

gain versus collector current curve with semi-empirical expressions for

IC and IB versus VBE. A graph of I C and IB versus VBE is used

to determine the maximum gain, BF, the collector knee current, IK, the
* tcollector saturation current, IS, the ratio of IB to IC at VBE = 0,

C2, and the reciprocal slope of the IB curve at low currents, NE. These

parameters are illustrated in Figure 6 which also shows a comparison

between PN code calculated characteristics and the SPICE simulation for the

standard npn transistor before irradiation. The low current gain is

simulated very well with SPICE up to the maximum gain. However, at

currents above the knee current, IK, the collector current has a reciprocal

slope of 2 and the base current a slope of 1. Therefore at high currents

the gain rolloff is fixed in SPICE. This did not present a major problem

S11 1
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for the present modeling effort since the region of interest for 12L

operation is at or below the current where maximum gain occurs. However,

for modeling photocurrent induced upset due to current overdrive, a more

accurate high injection transistor model would be in order.

PREDICTION OF NEUTRON DEGRADED PERFORMANCE

The prediction of fanout versus output current after neutron irradia-

tion is a simple extension of the previously described techniques. In

bipolar devices the predominant effect of neutrons is a reduction in

carrier lifetime according to the relation

1 L -
T¢ TO  Kn,p

where T¢ is the lifetime after a neutron fluence *, T o the initial

lifetimeand Kn,p the minority lifetime damage coefficients for n type and

p type silicon. In this study the effect of neutrons was determined for

each profile by rerunning the code with calculated values of degraded life-

time. The values of Kn and Kp used to calculate the degraded lifetimes

were 2.5 x 105 and 5 x 105 sec/cm2 respectively.

PROCESS VARIATIONS FOR NEUTRON HARDENING

As suggested in previous studies i° , one of the major means of improving

the neutron failure level of 12L logic arrays is to increase the initial

fanout per output. The logic array will fail when the fanout per output

degrades to the maximum circuit design fanout (number of inputs that an

output must sink). In the commercial designs for the 12L technology used

in this study the maximum circuit design fanout is two. This can be

reduced to one in order to increase neutron tolerance by circuit design.

To further increase neutron hardness by process design, several processing

13



variations were investigated which would increase the initial fanout

margin. The variations that were considered were restricted to a) changes

that would not severely degrade switching speed, and b) changes that would

not substantially increase processing complexity. With these restrictions

the variables considered were p- base implant concentration, epitaxial

thickness and resistivity and pnp transistor base width. Each of these

variations resulted in minor modifications to the standard commercial

doping density profiles for the various inverter cell components. Table 1

is a list of the variations considered and the components affected in the

modeling technique.

TABLE 1

Process Variation Components Affected

1. Reduced p- implant npn transistor only
(0.75, 0.5 and 0.25 times
standard)

2. Thinner epitaxial layer npn transistor and
(n+ substrate up against P+) parasitic diode

3. Lower resistivity epitaxial all three
(0.5 times standard)

4. Base Width of pnp pnp transistor only
(1.5, 0.5 times standard

5. Combined process variation npn transistor and
(0.5 times standard p- implant parasitic diode
and thin epitaxial)

The reduced base implant concentration is expected to yield higher up

gains for the npn transistor. The thinner epitaxial layer should also

improve the npn gain by increasing emitter efficiency. Both the epitaxial

resistivity and the pnp base width will affect the gain and saturation

current of the pnp injector. A lower saturation current for the pnp will

result in less current back injected into the pnp base and hence more base

drive for the npn.

14



PREIRRADIATION CHARACTERISTICS

The results of the model predictions for preirradiation fanout per col-

lector versus output current are given in Figure 7. The current range of 1

pA to 100 mA encompasses the range of operation for most 12L applica-

tions. In order to illustrate the high current debiasing effect of the

extrinsic base resistance, results are shown for the collector nearest to

and farthest from the base contact for the standard process. Compared to

the standard process, the highest fanouts were predicted for the combined

process variation. The reduction in p- implant concentration resulted in

increasing fanout as the concentration was reduced. The thinner epitaxial

layer variation resulted in slightly higher fanout with substantial

improvement at higher currents. A reduction in the epitaxial resistivity

by a factor of two resulted in peak fanouts comparable to the 0.5 p-

implant but more rapid falloff at high and low currents. The variation in

pnp base width indicated that increasing the base width would improve fan-

out while reducing it would decrease fanout.

The results of the SPICE simulations indicated that the primary vari-

ables in achieving high fanout are the saturation currents of the pnp

(Isp) and npn transistors (ISN). Optimization of fanout is obtained

with a high ratio of ISN to Isp. The intrinsic pnp and npn current

gains are of primary importance only when the ratio of ISN to Isp is on

the order of 10 or greater. The saturation current is proportional to

cross-sectional area and diffusion constant and inversely proportional to

base width and doping density. Of these variables the ones most affected

by the two dimensional aspects of the 12L inverter cell are the effective

cross sectional areas of the npn and pnp transistors and the affective base

width of the pnp transistors. For the npn transistor the cross sectional

area was assumed to be the area of the n epitaxial above the p- base

implant. For the pnp transistor the area was taken to be the length of the

p+ injector diffusion times the diffusion depth. The base of the pnp was

15
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determined at a point halfway between the surface and the bottom of the p+

diffusion. Since there is an uncertainty in the effective values of these

parameters for current collection, the ratio of ISN to Isp was adjusted

to give fanouts for the standard process which correlated with experimental

data taken on test cell. by NWSC Crane. In order to fit the data on the

standard process, the ISN to Isp ratio was increased by a factor of

2.5. This factor was used consistantly for all process variations both

with and without neutron degradation. Such a factor is not unreasonable

since the "effective" npn collector area is probably much larger than the

actual area due to injection of carriers across the entire npn emitter base

area. The ratio of total emitter-base area to total collector area is 2.8.

The improvement in initial fanouts for the reduced p- implant was due

both to an increase of npn gain and ISN. For the thinner epitaxial

device, the increase in fanout was due solely to an increase in npn gain

since ISN did not increase. The lower resistivity epitaxial resulted in

a much smaller Isp with essentially no change in the npn charac-

teristics. The higher fanouts for the wider base pnp were a result of

lower Isp and the lower fanout of the narrow base pnp was due to a higher

Isp. The combined process benefited both from the increase in ISN from

the lower base implant and the increase in gain from both the lower implant

and thinner epitaxial.

The only process variations which were available for comparison

to predicted results were the 0.5 x standard p- implant, the thinner

epitaxial and the combination of the two. As mentioned previously the

ratio ISN/ISP was adjusted to fit the experimental data for the

standard process. A comparison between predicted and experimental fanout

for the standard process and the process variations is given in Figure 8

for the collector nearest the base contact. The experimental data was

taken on a two output inverter cell test structure which also included a

metal gate over the pnp base.

17



The experimental devices used for this study were included on chips

that contained a large gate array. Processing difficulties were encoun-

tered during fabrication of these devices and consequently the yield on

gate arrays was minimal. Although many of the test structures were func-

tional, the devices tested by NWSC Crane showed a wide variation in pre-

irradiation response. The data shown in Figure 8 is an average of two

inverter cells preselected from a sample of 10 for optimimum fanout.

Although it was intended that the thin epitaxial devices have the n+

substrate up against the p- implant, angle lap measurements indicated

that this was not achieved. Therefore, while the amount of n epitaxial

under the p- base was reduced in the thin epitaxial devices, it was not

eliminated. Because of the difficulties encountered with the processing of

the test devices, a detailed comparison to predictions is not warranted.

However, a general comparison does indicate that thinning the epitaxial

layer results in minimal improvement of fanout and reducing the base

implant concentration yields substantial improvement in fanout as

predicted. Combining the process variations gave the best results. The

high current roll off of fanout in the experimental devices occurred at

much lower values of output current than predicted. This can be attributed

to the use of a one dimensional model for the intrinsic transistors which

does not account for lateral debiasing along the emitter-base junction,

especially in the npn transistor.

POST IRRADIATION CHARACTERISTICS

Each of the process variations were modeled for neutron degradation of

fanout per collector versus output current at 1013 n/cm2. A comparison

of these predictions to the experimental results on the standard, one half

base implant, thin epitaxial layer and combined process is shown in Figure

9. The predicted results for the standard process agree reasonably well

except at high currents. The predictions for the 0.5 base implant concen-

tration agree at peak fanout, however the predicted results at low currents

18
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show a much greater roll off than observed experimentally. For the thin

epi process the predicted degradation is much less than that observed

experimentally. This is probably due to the fact that the experimental

devices did not have the n+ substrate up against the p- base as it was

in the modeled device. Therefore the experimental thin epitaxial layer

device would be expected to perform only slightly different from the

standard device. The predicted results for the combined process agreed

reasonably well with experimental measurements, again with the exception of

high current roll off. The results of the predictions are best compared

to the experimental results through equation

1 1 -K
Fo( ) - FO() -FO

where FO(O) is the degraded fanout per collector, FO(O) is the initial fan-

out per collector, KFO the fanout damage coefficient and € the neutron

fluence in n/cm 2. The damage coefficient, which is a measure of the rate

of degradation, is a good measure of relative hardness. In Table 2 the

initial and degraded fanouts are given at 100 pA collector current along

with the damage coefficient both for the predicted and experimental

results.

A comparison of the damage coefficients for the process variations as

compared to the standard process indicate the following:

a. A reduction in the p- implant concentration not only increases

initial fanout but results in a reduced damage coefficient. These

results are supported by the experimental data.

b. While the thinner epitaxial layer results in only a minor increase

in fanout, the predicted damage coefficient is half that of the

standard process. This result was not verified experimentally.

However, as previously pointed out, the experimental device did not

have the epi under the p- base eliminated.

21
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c. The lower epitaxial resistivity gave higher initial fanout but did

not result in a substantial reduction in damage.

d. Variations in pnp base width resulted in moderate changes in fanout

not very minor changes in damage coefficient. The results

indicated that higher fanouts could be achieved with a wider base.

e. The best results are obtained using a combination of thinner epi

and reduced p- implant concentration. The predicted results

correlated very well with experimental data. Since the damage

coefficient for the combined process was less than for the 0.5 base

implant along, it is clear that the thin epi does improve hardness

as predicted.
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Table 2. Comparison of Predicted and Experimental Damage Coefficients.

Predicted Response at 100 pA Output Current

KFO(x 10- 1 5 )

Symbol (FO(O) FO() (cm

STD Standard commercial 8.85 6.14 4.99

TFB 0.75 x STD p- implant 11.9 7.94 4.19

OHB 0.5 x STD p- implant 19.1 12.1 3.03

OFB 0.25 x STD p- implant 45.6 23.3 2.10

THE Thin Epitaxial 10.2 8.23 2.35

CMB 0.5 x STD p- implant + thin epi 25.4 19.0 1.33

LRO 0.5 x STD epi p 16.8 9.93 4.12

WIB 1.5 x STD pnp base width 11.4 7.37 4.80

NAB 0.5 x STD pnp base width 4.1 3.34 5.55

Experimental Response at 100 pA Collector Current

STD Standard 8.9 6.05 5.29

OHB 0.5 x STD p- implant 27.2 17.0 2.21

THE Thin epitaxial 9.8 6.05 6.32

CMB 0.5 x STD p- + thin epi 28.6 19.3 1.68

Using the predicted damage coefficients for the various process modi-

fications, fluence of failure calculations were made for circuit design

fanouts of 2 and 1. For the 12L technology used in this study a design

fanout of 2 would correspond to a commercial design and a fanout of 1 to a

hard design. Table 3 is a list of the calculated fluence of failure as

determined from the predicted KFOS.

23



TABLE 3. Predicted Fluence of Failure for Process Variations.

Design FO = 2 Design FO = 1 *F(FO) = 1)

Process (x 1014 n/c ) (x 14 n/cm 2) F(FO = 2) (STD)

STD 0.775 1.78 2.30

TFB 0.992 2.19 2.83

OHB 1.48 3.13 4.04

OFB 2.28 4.66 6.01

THE 1.71 3.84 4.95

CMB 3.46 7.22 9. 32

LRO 1.07 2.28 2.94

WIB 0.859 1.90 2.45

NAB 0.461 1.36 1.75

*Based on damage coefficient at 100 UA collector current.

The predicted failure levels given in Table 3 are based on nominal

predicted response using damage coefficients calculated at 100 UA collector

current. Since the damage coefficient is a strong function of current, the

failure level would be lower at lower operating currents. The last column

in Table 3 is the ratio of failure fluence for a radiation hard design to

the failure fluence of the standard process using a commercial design.

Thus it is a measure of the predicted increase of failure level expected

when the process variation is combined with a radiation hard design. The

change in design alone would yield a factor of 2.3 increase in failure

level. The best results would be for the combined process which would give

a factor of 9.3 increase over the commercial part.

The process variations were chosen to have minimal impact on the

commercial process. However, some difficulties may arise in implementing
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necessary to maintain sufficient breakdown on the outputs. The thinner

epitaxial is harder to control and may result in-wider variation in

inverter characteristics due to epitaxial thickness variations. Also the

thinner epi will cause a higher emitter-base capacitance on the npn tran-

sistors which would reduce the switching speed. The lower resistivity epi

will also increase the emmitter-base capacitance and hence reduce speed.

SUMMARY

A modeling technique has been developed and applied to 12L inverters

to predict the neutron degradation of fanout versus output current for a

standard commercial 12L process and variations of the process to increase

neutron hardness. The technique is equally applicable to arbitrary geo-

metries and processes. Good agreement was obtained in comparing predicted

response to experimental data on test devices fabricated with the standard

process and three variations of the process. The results of the predic-

tions indicate that for the process variations considered, maximum failure

fluence is achieved by reducing the p- base implant concentration and

eliminating the n epitaxial region under the npn base. Not all process

variations which gave predicted fanouts higher than the standard process

resulted in a substantial increase in hardness. Both wider base pnp and

the lower p epitaxial gave significantly higher initial fanouts with very

little improvement in hardness, while the thin epitaxial process predic-

tions yielded only a modest improvement in initial fanout with a substan-

tial increase in hardness.
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